Introduction

- Rapid development of technologies yielding multidimensional data
 - LSCM / Video
 - Electron tomography
 - IRM / CT scan

3D Processing and Analysis with ImageJ

Introduction

- Electron tomography
 - Series of tilted projections
 - Reconstruct original volume

Introduction

- Set of 3D projections
 - -60° to 60°
- Melanosomes

Introduction

- Reconstruction
 - 3D volume
- Melanosomes

Introduction

- Modelisation
 - Drawing of 3D structures
- Melanosomes
Introduction

- Steps of analysis:
 - Reading data
 - Visualization
 - Processing
 - Reduce noise
 - Enhance objects
 - Segmentation
 - Analysis

Reading data

- 3D data:
 - X-Y + Z
 - Stack of 2D images
- 4D data:
 - 3D data + time
- 5D data:
 - 3D data + time + channel

Reading data

- A set of 2D files
 - Import image sequence
- One file storing all images
 - Tiff
 - Proprietary formats
 - Stk, lif, zvi, dm3, …
- Use LOCI Bio-Formats plugin

2D visualisation

- Only one slice is displayed
 - Adjust brightness/contrast
- Normalize values for all slices
 - Thickness increase in tomography
 - Bleaching in fluo

2D visualisation

- Reslicing
 - Coronal, horizontal and sagittal sections
- Different spacing XY and Z
 - Interpolation
- Isotropic data
 - Electron tomography

3D visualization

- Volume Viewer plugin
 - Interactive cross-sections
- Volume rendering
- Volume Slicer
 - Macro for making animations
3D visualization

- ImageJ 3D Viewer
 - Volume and surface rendering
 - Multiple data
 - Registration
 - Transparencies
 - 4D data
 - ...

3D processing

- 2D filtering slice by slice
- 3D filtering
 - A sphere of a given radius
 - Usual filters: mean, median, min, max, ...
- Time-consuming
 - Use of JNI or multi-threading

3D processing

- Noise reduction
 - Objects same location in consecutive slices
 - Not noise
- Common filters:
 - Mean, gaussian
 - Median
- « Enhanced » filters: sigma or shift
- Anisotropic filtering

3D Processing

- 2D vs 3D median processing
 - Radius = 2

3D processing

- Enhance objects
 - « Hard » smoothing to homogeneize values inside the objects
- Bright spots detection
 - Tophat filtering
 - Minimum filtering (supress bright spots)
 - Maximum filtering (compute background)
 - Difference between original and background
 - spots
3D processing

- 2D vs 3D top hat processing
 - Radius = 7

3D segmentation

- Detection of 3D objects
 - 3D objects may be quite complex (ex: golgi)
- Manual segmentation
 - Set of ROI
 - Segmentation Editor
- Manual binarization
 - Threshold each slices independently
 - Only 2D objects

3D segmentation

- Segmentation Editor
 - Draw structure on each slice
 - Display 3D structure
- LiveWire Tool
- see TrackEM2

3D segmentation

- Manual binarization
 - Create a 3D object by connecting 2D cross-sections
 - 3D Object Counter
 - One threshold for all slices

3D segmentation

- Mathematical morphology
 - Two basic operations
 - Erosion and dilatation
- Improve binarization
 - Smooth objects (close)
 - Separate objects (open, watershed)
 - Fill holes inside objects

3D analysis

- Geometrical features
- Distances
- Intensity features
- Surface analysis
- Granulometry
3D analysis

- Geometrical features
 - Volume, surface, center
 - Can be computed from 2D slices
 - Feret's diameter
 - Needs 3D computation
 - Ellipsoid fitting
 - Main axes
 - Main and median elongation

3D analysis

- 3D distances
 - Center to center
 - Center to border
 - Border to border
 - Distances along a direction

3D analysis

- Intensity features
 - Integrated density
 - Mass centers
 - Statistical values
 - Mean, variance, min, max
 - Intensity distribution

3D analysis

- Surface analysis
 - Curvatures computation
 - Complex mathematics

- Granulometry
 - Series of opening and closing
 - Objects sizes analysis
 - Distribution of distances between objects
3D analysis

- Example:
 - 3D F.I.S.H
 - Intergenic distances
 - Interaction with CTs

Example:
- Intergenic distances
- Interaction with CTs

3D analysis

- Example:
 - multi F.I.S.H
 - 7 genes with colocalization

Example:
- multi F.I.S.H
- 7 genes with colocalization

3D analysis

- Example:
 - Spindle positioning in ovocytes
 - Compute possible poles
 - Check if spindle moves towards closest pole

Example:
- Spindle positioning in ovocytes
- Compute possible poles
- Check if spindle moves towards closest pole

3D analysis

- Example:
 - Spindle positioning in ovocytes

Example:
- Spindle positioning in ovocytes

Conclusion

- Growing multidimensional data
- 3D visualization is not more the big issue
- 3D Processing is related to 2D processing
 - 2D filtering slice by slice may be an alternative
- 3D analysis may be a bit more complex than 2D analysis
 - However biology is mainly (only ?) 3D (4D ?)